Sine is a function defined as sin(x), which gives the ratio of the opposite side to the hypotenuse in a right-angled triangle.
Cosine is a function defined as cos(x), which gives the ratio of the adjacent side to the hypotenuse in a right-angled triangle.
Tangent is a function defined as tan(x), which gives the ratio of sine to cosine.
cscant is the reciprocal of sine, defined as csc(x) = 1/sin(x).
Secant is the reciprocal of cosine, defined as sec(x) = 1/cos(x).
Cotangent is the reciprocal of tangent, defined as cot(x) = 1/tan(x).
Arcsine is the inverse of sine, providing the angle whose sine is x.
Arccosine is the inverse of cosine, providing the angle whose cosine is x.
Arctangent is the inverse of tangent, providing the angle whose tangent is x.
Arccscant is the inverse of cscant, providing the angle whose cscant is x.
Arcsecant is the inverse of secant, providing the angle whose secant is x.
Arccotangent is the inverse of cotangent, providing the angle whose cotangent is x.
The cardinal sine function, defined as sinc(x) = sin(x)/x.
The analog of sinc of the cosine function, defined as cosc(x) = cos(x)/x.
The analog of sinc of the tangent function, defined as tanc(x) = tan(x)/x.
The analog of sinc of the cosecant function, defined as cscc(x) = csc(x)/x.
The analog of sinc of the secant function, defined as secc(x) = sec(x)/x.
The analog of sinc of the cotangent function, defined as cotc(x) = cot(x)/x.
The analog of sinc of the Bessel J function, defined as jinc(x) = J1(x)/x.
Somvrero function, alternate jinc function that is normalised also called besinc function, defined as somb(x,y) = 2*J1(p*pi)/p*pi [p^2=x^2+y^2].
The analog of sinc of the secant function, defined as exsecc(x) = sec(x)/x.
The analog of sinc of the cosecant function, defined as excscc(x) = csc(x)/x.
The analog of sinc of the versed sine function, defined as versinc(x) = versin(x)/x.
The analog of sinc of the vercosine function, defined as vercosinc(x) = vercos(x)/x.
The analog of sinc of the coversed sine function, defined as coversinc(x) = coversin(x)/x.
The analog of sinc of the covercosine function, defined as covercosc(x) = covercos(x)/x.
The analog of sinc of the haversine function, defined as haversinc(x) = haversin(x)/x.
The analog of sinc of the hacovercoe function, defined as hacovercosc(x) = hacovercos(x)/x.
The analog of sinc of the sine function, defined as sinc(x) = sin(x)/x.
The analog of sinc of the sine function, defined as sinc(x) = sin(x)/x.
The analog of sinc of the sine function, defined as sinc(x) = sin(x)/x.
Inverse of The analog of sinc of the sine function
Inverse of The analog of sinc of the cosine function
Quarter inverse of The analog of sinc of the cosine function. Defined as acosq(x) = acosc(i*x/4pi)
The analog of sinc of the arcsine function, defined as casin(x) = asin(x)/x.
The analog of sinc of the arccosine function, defined as cacos(x) = acos(x)/x.
The analog of sinc of the arctangent function, defined as catan(x) = atan(x)/x.
The analog of sinc of the arccscant function, defined as cacsc(x) = acsc(x)/x.
The analog of sinc of the arcsecant function, defined as casec(x) = asec(x)/x.
The analog of sinc of the arccotangent function, defined as cot(x) = acot(x)/x.
Exsec is defined as sec(x) - 1.
Excsc is defined as csc(x) - 1.
Versine is defined as 1 - cos(x).
Vercosine is defined as 1 + cos(x).
Coversine is defined as 1 - sin(x).
Covercosine is defined as 1 + sin(x).
Haversine is defined as 0.5 * (1 - cos(x)).
hacovercoe is defined as 0.5 * (1 + sin(x)).
Arcversine is the inverse of versine.
Arcvercosine is the inverse of vercosine.
Arccoversine is the inverse of coversine.
Arccovercosine is the inverse of covercosine.
Archaversine is the inverse of haversine.
Archacovercoe is the inverse of hacovercoe.
Sinh is defined as sinh(x) = (e^x - e^(-x)) / 2.
Cosh is defined as cosh(x) = (e^x + e^(-x)) / 2.
Tanh is defined as tanh(x) = sinh(x) / cosh(x).
Csch is the reciprocal of sinh, defined as csch(x) = 1/sinh(x).
Sech is the reciprocal of cosh, defined as sech(x) = 1/cosh(x).
Coth is the reciprocal of tanh, defined as coth(x) = 1/tanh(x).
Arcsinh is the inverse of sinh, providing the area whose sinh is x.
Arccosh is the inverse of cosh, providing the area whose cosh is x.
Arctanh is the inverse of tanh, providing the area whose tanh is x.
Arcscsch is the inverse of csch, providing the area whose csch is x.
Arcsech is the inverse of sech, providing the area whose sech is x.
Arccoth is the inverse of coth, providing the area whose coth is x.
Cardinal sinh function defined as sinhc(x) = sinh(x)/x.
Cardinal cosh function defined as coshc(x) = cosh(x)/x.
Cardinal tanh function defined as tanhc(x) = tanh(x)/x.
Cardinal csch function defined as cschc(x) = csch(x)/x.
Cardinal sech function defined as sechc(x) = sech(x)/x.
Cardinal coth function defined as cothc(x) = coth(x)/x.
Function for cos and i sin 'cis': cis(x) = cos(x) + i*sin(x)
.
Function for sin and i cos 'sic': sic(x) = sin(x) + i*cos(x)
.
Function for sin and cos 'cas': cas(x) = sin(x) + cos(x)
.
Function for hyperbolic cos and i sin 'cish': cish(x) = cosh(x) + i*sinh(x)
.
Function for hyperbolic sin and i cos 'sich': sich(x) = sinh(x) + i*cosh(x)
.
Function for hyperbolic cos and sin 'cash': sich(x) = cosh(x) + sinh(x)
.
Function for cardinal cos and i sin 'cisc': cisc(x) = cis(x)/x
.
Function for cardinal sin and i sin 'sicc': sicc(x) = sic(x)/x
.
Function for cardinal cos and sin 'casc': casc(x) = cas(x)/x
.
Function for cardinal hyperbolic cos and i sin 'cishc': cishc(x) = cish(x)/x
.
Function for cardinal hyperbolic sin and i cos 'sichc': sichc(x) = sich(x)/x
.
Function for cardinal hyperbolic cos and sin 'cashc': cashc(x) = cash(x)/x
.
Function for 'sinp': sinp(x) = 2 * sinh(asinh((3x - 4)/2)/3)
.
Function for 'cosp': cosp(x) = (3 - 2 * cosh((2/3) * asinh((3x - 4)/2))) * 1i
.
Function for 'tanp': tanp(x) = sinh((1/3) * asinh((3x - 4)/2)) / (3 - 2 * cosh((2/3) * asinh((3x - 4)/2)))
.
Function for 'cscp': cscp(x) = 1 / (2 * sinh((1/3) * asinh((3x - 4)/2)))
.
Function for 'secp': secp(x) = 1 / (3 - 2 * cosh((2/3) * asinh((3x - 4)/2)))
.
Function for 'cotp': cotp(x) = sinh((1/3) * asinh((3x - 4)/2)) / cosh((1/3) * asinh((3x - 4)/2))
.
Function for 'asinp': asinp(x) = (2 * sinh(3 * asinh(x/2)) + 4)/3
.
Function for 'acosp': acosp(x) = (2 * sinh(3 * acosh((3x - 2)/2)) + 4)/3
.
Function for 'acscp': acscp(x) = (2 * sinh(3 * asinh(1/x)) + 4)/3
.
Function for 'asecp': asecp(x) = (2 * sinh(3 * acosh((3 - 1/x)/2)) + 4)/3
.
Function: arithmeticmean(a, b) = (a + b) / 2
.
Function: geometricmean(a, b) = sqrt(a * b)
.
Function: arithmeticgeometricmean(a, b) = ... (elaborate formula here)
.
Function: arithmeticharmonicmean(a, b) = ... (elaborate formula here)
.
Function: geometricharmonicmean(a, b) = ... (elaborate formula here)
.
Function: harmonicmean(a, b) = 1 / ((1/a) + (1/b))
.
Function: quadraticmean(a, b) = sqrt((a^2 + b^2) / 2)
.
Function: cubicmean(a, b) = (a^3 + b^3)^(1/3)
.
Function: heronianmean(a, b) = (a + b + sqrt(a*b)) / 3
.
Function: contraharmonicmean(a, b) = (a^2 + b^2) / (a + b)
.
Function: neumansandormean(a, b) = (a - b) / (2 * asinh((a - b) / (a + b)))
.
Function: neumansandortmean(a, b) = (a - b) / (2 * atan((a - b) / (a + b)))
.
Function: rootmean(a, b) = sqrt((a^2 + b^2) / 2)
.
Function: logarithmicmean(a, b) = (a - b) / (log(a) - log(b))
.
Function: identricmean(a, b) = (a^a / b^b)^(1 / (a - b)) / euler
.
Convert x to a complex number.
Conjugate of a complex number.
Argument of a complex number.
Magnitude of a complex number.
Real absolute of a complex number.
Imaginary absolute of a complex number.
Takes absolute of each component of a complex number.
sabs(x) is defined as sabs(x)=sqrt(x^2)
Magnitude of a complex number squared.
Projection of a complex number.
Signum (unit) of a complex number.
Dot product of two complex numbers.
Cross product of two complex numbers.
Imaginary part of a complex number.
Real part of a complex number.
Rounds each component of an complex number
Takes ceiling each component of an complex number
Takes floor of each component of an complex number
Function for 'Cullen': cullen(x) = x * 2^x + 1
.
Function for 'Mersenne': mersenne(x) = 2^x - 1
.
Function for 'Double Mersenne': doubleMersenne(x) = 2^(2^x - 1) - 1
.
Function for 'Fermat': fermat(x) = 2^(2^x) + 1
.
Function for 'Proth': proth(a, x) = a * 2^x + 1
.
Function for 'Thabit': thabit(x) = 3 * 2^x - 1
.
Function for 'Woodall': woodall(x) = x * 2^x - 1
.
Function for 'Hilbert': hilbert(x) = 4x + 1
.
Function for 'Fibonacci': fibonacci(x) = ((1.61803399^x - (-0.61803399)^x) / sqrt(5))
.
Function for 'Tribonacci': tribonacci(x) = tribonacci(x-1)+tribonacci(x-2)+tribonacci(x-3) ; t0== 0,1,1
.
Function for alternate 'Tribonacci': tribonaccialt(x) = tribonaccialt(x-1)+tribonaccialt(x-2)+tribonaccialt(x-3) ; t0== 0,0,1
.
Function for 'Lucas': lucas(x) = 1.61803399^x - (-0.61803399)^x
.
Function for 'Leonardo': leonardo(x)=2*fibonacci(x) - 1 ; l(x) = 2l(x-1)-l(x-3) = l(n-1)+l(n-2)+1 ; l0==0,1
.
Function for 'Naryana ': naryana(x) = ...; n(x)=n(x-1)+n(x-3) ; n0==1,1,1
.
Function for 'Padovan': padovan(x) = 1.61803399^x - (-0.61803399)^x ; p(x) = p(x-2)+p(x-3) = p(x-1)+p(x-5) ; p0==1,1,1
.
Function for 'Perrin': perrin(x) = padovan(x+1)+padovan(x-10) ; p(x)=p(x-2)+p(x-3) ; p0==3,0,2
.
Function for 'Necklace Cover 3': necklacecover3 = naryana(x)+2*naryana(x-3); a(n) = a(n-1) + a(n-3) ; a0 == 3,1,1,1
.
Function for 'Necklace Cover 3': a(n) = a(n-1) + a(n-4) ; a0 == 4,1,1,1,1
.
Function for 'Necklace Cover 3': a(n) = a(n-1) + a(n-5) ; a0 == 5,1,1,1,1,1
.
Function for 'Necklace Cover 3': a(n) = a(n-1) + a(n-6) ; a0 == 6,1,1,1,1,1,1
.
Function for 'Necklace Cover 3': a(n) = a(n-1) + a(n-7) ; a0 == 7,1,1,1,1,1,1,1
.
Function for 'Necklace Cover 3': a(n) = a(n-1) + a(n-8) ; a0 == 8,1,1,1,1,1,1,1,1
.
Function for 'Necklace Cover 3': a(n) = a(n-1) + a(n-9) ; a0 == 9,1,1,1,1,1,1,1,1,1
.
Function for 'Collatz': collatz(x) = (x/2)*cos(pi*x/2)^2+(3x+1)*sin(pi*x/2)^2
.
Function for 'Oriented Tree': orientedTree(x) = round(0.2257 * (5.6465^x / x^(5/2)))
.
Function for 'Magic': magic(x) = 2 * (ncr(x, 1) + ncr(x, 2) + ncr(x, 3))
.
Function for 'Magic Constant': magicConst(x) = (x * (x^2 + 1)) / 2
.
Function for 'Alucin': alucin(x) = x^3 / [(1 - x^2)(1 - x^3)(1 - x^4)]
.
Function for 'Metallic Ratio': metallicRatio(x) = (x + sqrt(x^2 + 4)) / 2
.
Function for 'Joukowsky': joukowsky(x) = x + (1 / x)
.
Function for 'Kármán-Trefftz': karmantrefftz(a, x) = [((x + a)^(2 - c/pi))] / [((x - a)^(2 - c/pi))]
.
Function for 'Symmetrical Joukowsky': symmetricalJoukowsky(x, a) = exp(i*c) * [x - a + (1 / (x - a)) + 2a^2 / (a + c)]
.
Function for 'Cayley': cayley(x) = (x - i) / (x + 1)
.
Function for 'Bilinear': bilinear(x) = (x - 1) / (x + 1)
.
Function for 'Poincaré Disc Metric': poincareDiscMetric(a, x) = 2 * atanh((a - x) / (1 - a * conj(x)))
.
Function for 'Poincaré Metric': poincareMetric(a, x) = 2 * atanh((a - x) / (a - conj(x)))
.
Function: superballot(b) = (60 * Gamma(2 * b + 1)) / (Gamma(b + 1) * Gamma(b + 4))
The Necklace Numbers calculate the number of n-bead necklaces with up to k different colored beads.
Function definition: necklacel(k, n) = ...
The Corrected Necklace Numbers are a variation of the necklace function, the number of n-bead necklaces with exactly k different colored beads.
Function definition: necklaceb(k, n) = ...
Function for 'Eulerian Number 2': euleriannum2(n, k) = ...
.
Function for 'Schroder-Hipparchus': schroderhipparchus(x) = ...
.
Function for 'Generalized Schroder-Hipparchus': generalizedschroderhipparchus(k, x) = ...
.
Function for 'Iverson Bracket': iversonbracketeq0(t) = ...
.
Function for 'Diagentringer Number': diagentringernum(x) = ...
.
Function for 'Number of De Bruijn': numberofdebrujin(k, n) = ...
.
Function for 'Stirling 2': stirling2(a, b) = ...
.
Function for 'Stirling': stirling(x, y) = ...
.
Function for 'Unsigned Stirling': unsignedstirling(x, y) = ...
.
Function for 'Gregory Coefficient D': gregorycoefd(t, n) = ...
.
Function for 'Gregory Coefficient': gregorycoef(x) = ...
.
Function for 'Nielsen Ramanujan': nielsenramanujand(b, a) = ...
.
Function for 'Rastrigin': rastrigin(a, b) = 10 * 2 + (a^2 - 10 * cos(2πa)) + (b^2 - 10 * cos(2πb))
.
Function for 'Ackley': ackley(a, b) = -20 * e^(-0.5 * sqrt(a^2 + b^2)) - e^(0.5 * (cos(2πa) + cos(2πb))) + e + 20
.
Function for 'Sphere': sphere(a, b) = a^2 + b^2
.
Function for 'Rosenbrock': rosenbrock(a, b) = 100 * (b - a^2)^2 + (1 - a)^2
.
Function for 'Beale': beale(a, b) = (1.5 - a + ab)^2 + (2.25 - a + ab^2)^2 + (2.625 - a + ab^3)^2
.
Function for 'Goldstein Price': goldsteinprice(a, b) = (1 + (a + b + 1)^2 * (19 - 14a + 3a^2 - 14b + 6ab + 3b^2)) * (30 + (2a - 3b)^2 * (18 - 32a + 12a^2 + 48b - 36ab + 27b^2))
.
Function for 'Booth': booth(a, b) = (a + 2b - 7)^2 + (2a + b - 5)^2
.
Function for 'Bukin': bukin(a, b) = 100 * sqrt(|b - 0.01a^2|) + 0.01 |a + 10|
.
Function for 'Matyas': matyas(a, b) = 0.26(a^2 + b^2) - 0.48ab
.
Function for 'Levi': levi(a, b) = sin(3πa)^3 + (1 - a)^2(1 + sin(3πb)^3) + (1 - b)^2(1 + sin(2πb)^2)
.
Function for 'Himmelblau': himmelblau(a, b) = (a^2 - 11)^2 + (a*b^2 - 7)^2
.
Function for 'Three Hump': threehump(a, b) = 2a^2 - 1.05a^4 + a^2b^2 + b^2
.
Function for 'Easom': easom(a, b) = cos(a) * cos(b) * e^(-((a - π)^2 + (b - π)^2))
.
Function for 'Cross Intray': crossintray(a, b) = (-0.0001 - sin(a) * sin(b) * e^(|100 - sqrt(a^2 + b^2)|/π))^0.1
.
Function for 'Egg Holder': eggholder(a, b) = -((b + 47) * sin(sqrt(|a/2 + 47|)) + sin(sqrt(|a - (b + 47)|)))
.
Function for 'Holder Table': holdertable(a, b) = -|sin(a) * cos(b) * e^(1 - sqrt(a^2 + b^2)/π)|
.
Function for 'McCormick': mccormick(a, b) = sin(a + b) + (a - b)^2 - 1.5a + 2.5b + 1
.
Function for 'Schaffer N.2': schaffern2(a, b) = \frac{\sin^2(a^2 - b^2) - 0.5}{(1 + 0.001(a^2 + b^2))^2}
.
Function for 'Schaffer N.4': schaffern4(a, b) = \frac{\cos^2(\sin(|a^2 - b^2|)) - 0.5}{(1 + 0.001(a^2 + b^2))^2}
.
Function for 'Styblinski-Tang': styblinskitang(a, b) = \frac{(a^4 - 16a) + (b^4 - 16b) + 5}{2}
.
Function for 'Mihrasbird': mihrasbird(a, b) = \sin(b) e^{(1 - \cos(a))^2} + \sin(a) e^{(1 - \cos(b))^2} + (a - b)^2
.
Function for 'Townsend': townsend(a, b) = -1 - \cos((a - 0.1)b)^2 - a \sin(3a + b)
.
Function for 'Gomez-Levi': gomezlevi(a, b) = 4a^2 - 2.1a^4 + \frac{a^5}{6} + ab + 4b^2 - 4b^4
.
Function for 'Simionescu': simionescu(a, b) = 0.1ab
.
Function for 'Griewank': griewank(a, b) = 1 + \frac{a^2 + b^2}{4000} - \cos(a) \cos\left(\frac{b}{\sqrt{2}}\right)
.
Function for 'Schwefel 2.21': schwefel221(a, b) = 0.01(|a| + |b|)
.
Function for 'Schwefel 2.22': schwefel222(a, b) = \max(|a|, |b|)
.
Function for 'Bird': bird(a, b) = \sin(a) e^{(1 - \cos(b))^2} + \cos(b) e^{(1 - \sin(a))^2} + (a - b)^2
.
Function for 'Alpine': alpine(a, b) = |a \sin(a) + 0.1a| + |b \sin(b) + 0.1b|
.
Function for 'SDP': sdp(a, b) = |a|^2 + |b|^3
.
Function for 'Sum of Squares on Sphere': sumsquaresonsphere(a, b) = a^2 + b^2 - \cos(18a\pi) - \cos(18b\pi)
.
Function for 'Michalewicz': michalewicz(a, b) = -\sum_{i=1}^{\lfloor a \rfloor} i \sin(b) \sin\left(\frac{i b}{\lfloor a \rfloor}\right)^{2 \lfloor a \rfloor}
.
Function for 'Booth': booths(a, b) = (a + 2b - 7)^2 + (2a + b - 5)^2
.
Function for 'Sum of Squares': sumsquares(a, b) = a^2 + b^2
.
Function for 'Bohachevsky': bohachevsky(a, b) = a^2 + 2b^2 - 0.3\cos(3\pi a) - 0.4\cos(4\pi b) + 0.7
.
Function for 'Six Hump Camel': sixhumpcamel(a, b) = (4 + a^2 - \frac{2.1a^2}{3} + a^4) + (b^2 - 4b^2)(-4 + 4b^2)
.
Function for 'Shubert': shubert(a, b) = \sum_{i=1}^{5}\sin((i + 1)a + i) \sin((i + 1)b + i)
.
Function for 'Levy': levy(a, b) = \sin^2(3\pi a) + (a - 1)^2(1 + \sin^2(3\pi b))\
.
Function for 'Rosenbrock': rosenbrock(a, b) = (1 - a)^2 + 100(b - a^2)^2
.
Function for 'Rastrigin': rastrigin(a, b) = 10n + (a^2 + b^2 - 10\cos(2\pi a) - 10\cos(2\pi b))
.
Function for 'Dedekind Eta': dedekindeta(z) = e^{2\pi i z} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z})
.
Function for 'Einstein Series': einsteinseries(a, b) = \sum_{i=-5}^{5} \sum_{j=-5}^{5} \frac{1}{(i + jb)^a}, \quad (i, j) \neq (0, 0)
.
Function for 'Fourier Einstein': fouriereinstein(a, b) = 2 \cdot \sum_{i=-5}^{5} \sum_{j=-5}^{5} \frac{1}{(i + jb)^a} \cdot ZZZ(a)
.
Function for 'Jacobi Theta 1': jacobitheta1(z, q) = 2 \cdot \sum_{n=0}^{\infty} (-1)^n q^{(n + 0.5)^2} \sin((2n + 1)z)
.
Function for 'Jacobi Theta 2': jacobitheta2(z, q) = 2 \cdot \sum_{n=0}^{\infty} q^{(n + 0.5)^2} \cos((2n + 1)z)
.
Function for 'Jacobi Theta 3': jacobitheta3(z, q) = 2 \cdot \sum_{n=1}^{\infty} q^{n^2} \cos(2nz)
.
Function for 'Jacobi Theta 4': jacobitheta4(z, q) = 2 \cdot \sum_{n=1}^{\infty} (-1)^n q^{n^2} \cos(2nz)
.
Function for 'Elliptic Modulus': ellipticModulus(a, b) = \left(\frac{\theta_2(a, b)}{\theta_1(a, b)}\right)^2
.
Function for 'Comp Elliptic Modulus': compEllipticModulus(a, b) = \left(\frac{\theta_4(a, b)}{\theta_1(a, b)}\right)^2
.
Function for 'Elliptic Lambda': ellipticLambda(a, b) = \left(\frac{\theta_2(a, b)}{\theta_3(a, b)}\right)^4
.
Function for 'J Invariant': jinvariant(b) = ((dedekindeta(x)^24+(256*dedekindeta(x*2)^24))^3)/(1728*dedekindeta(b)^48*dedekindeta(x*2)^24)
.
Function for 'Picard-Fuchs J': picardFuchsJ(b) = \frac{g_2(b)^3}{g_2(b)^3 - 27g_3(b)^2}
.
Function for 'Elliptic Discriminant': ellipticDiscriminant(b) = g_2(b)^3 - 27g_3(b)^2
.
Function for 'Elliptic Lambda Star': ellipticLambdaStar(a, b) = \left(\frac{\theta_2(a, b)}{\theta_3(a, b)}\right)^2
.
Function for 'Lacunary': lacunary(a, b) = Σ (b^(a^i)) for i = 0 to ∞
.
Function for 'Weber F': weberf(b) = (dedekindeta(b)^2) / (dedekindeta(b/2) * dedekindeta(2b))
.
Function for 'Weber F1': weberf1(b) = dedekindeta(b/2) / dedekindeta(b)
.
Function for 'Weber F2': weberf2(b) = (√2 * dedekindeta(2b)) / dedekindeta(b)
.
Function for 'Weber R': weberr(a, b) = (2^(a-1)/4 * qpocinf(b^a, b^(2a), bign)) / (qpocinf(b, b^2, bign)^a)
.
Function for 'Weber R5': weberr5(a, b) = (2^(5-1)/4 * qpocinf(b^a, b^10, bign)) / (qpocinf(b, b^2, bign)^5)
.
Function: polygonal(a, b) = ((a - 2) * b^2 - (a - 4) * b) / 2
Function: antisidepolygonal(a, b) = (sqrt(8 * (a - 2) + b^2 - 4 * b) + (a - 4)) / (2 * a - 4)
Function: antipolygonal(a, b) = antisidepolygonal(a, b)
Function: centeredpolygonal(a, b) = (a / 2 * b * (b - 1)) + 1
Function: pyramidal(a, b) = (3 * b^2 + (b^2 * (a - 2)) - b - (a - 5)) / 6
Function: star(b) = 6 * b * (b - 1) + 1
Function: starprime(b)
Function: superstarprime(b)
Function: reversesuperstar(b)
Function for 'Trigonal': trigonal(b)
is a geometric function involving complex numbers.
Function for 'Pentagonal': pentagonal(b)
is a geometric function involving complex numbers.
Function for 'Hexagonal': hexagonal(b)
is a geometric function involving complex numbers.
Function for 'Septagonal': septagonal(b)
is a geometric function involving complex numbers.
Function for 'Octagonal': octagonal(b)
is a geometric function involving complex numbers.
Function for 'Nonagonal': nonagonal(b)
is a geometric function involving complex numbers.
Function for 'Decaagonal': decaagonal(b)
is a geometric function involving complex numbers.
Function for 'Dodecagonal': dodecagonalgonal(b)
is a geometric function involving complex numbers.
Function for 'Icosagonal': icosagonal(b)
is a geometric function involving complex numbers.
Function for 'Myriagonal': myriagonal(b)
is a geometric function involving complex numbers.
Function for 'Gnomon': gnomon(b) = 2b + 1
.
Function for 'Pronic': pronic(b) = b(b + 1)
.
Function for 'Hauy Octahedral': hauyoctahedral(b) = (2b - 1)((2b²) - (2b + 3)) / 3
.
Function for 'Hauy Rhombic Dodecahedronal': hauyrhombicdodecahedronal(b) = (2b - 1)((8b²) - (14b + 7))
.
Function for 'Hauy Square Pyramid': hauysquarepyramid(b) = b(4b² - 1) / 3
.
Function for 'Octahedral': octahedral(b) = b(2b² + 1) / 3
.
Function for 'Rhombic Dodecahedronal': rhombicdodecahedronal(b)
is a geometric function involving complex numbers.
Function for 'Truncoctahedral': truncoctahedral(b)
is a geometric function involving complex numbers.
Function for 'Trunc Tetrahedral': trunctetrahedral(b)
is a geometric function involving complex numbers.
Function for 'Tetrahedral': tetrahedral(b)
is a geometric function involving binomial coefficients.
Function for 'Pentachoric': pentachoric(b)
is a geometric function involving binomial coefficients.
Function for 'Simplex': simplex(b, a)
simplex(b,a)=ncr(b+a-1,a)
Function for 'Dot': x⁰ = 1
.
Function for 'Line': x¹ = x
.
Function for 'Square': sqr(x) = b²
.
Function for 'Cube': cum(x) = b³
.
Function for 'Tesseract': tesseract(x) = b⁴
.
Function for 'Penteract': Penteract(x) = b⁵
.
Function for 'Biquadratic': biquadratic(x) = b⁴
.
Function for 'Surfolide': surfolide(x) = b⁵
.
Function for 'Second Surfolide': secondsurfolide(x) = b⁷
.
Function for 'Third Surfolide': thirdsurfolide(x) = b¹¹
.
Function for 'Fourth Surfolide': fourthsurfolide(x) = b¹³
.
Function for 'Fifth Surfolide': fifthsurfolide(x) = b¹⁷
.
Function for 'Sixth Surfolide': sixthsurfolide(x) = b¹⁹
.
Function for 'Seventh Surfolide': seventhsurfolide(x) = b²³
.
Function for 'Nth Surfolide': nthsurfolide(x, a) = xnthPrime(a+2)
.
Function for 'Zenzicube': zenzicube(x) = x^6
.
Function for 'Cubicube': cubicube(x) = x^9
.
Function for 'Zenzizenzizenzic': zenzizenzizenzic(x) = x^8
.
Function for 'Zenzizenzicube': zenzizenzicube(x) = x^12
.
Function for 'Zenzizenzizenzizenzic': zenzizenzizenzizenzic(x) = x^16
.
Function for 'Zenzicubicube': zenzicubicube(x) = x^18
.
Function for 'Zenzizenzizenzicube': zenzizenzizenzicube(x) = x^24
.
Function for 'Nth Zenzic': nthzenzic(x, a) = x^(2^a)
.
Function for 'Bessel K': besselk(a, x) = (Bessel I(-a, x) - Bessel I(a, x)) / sin(pi * a)
.
Function for 'Bessel I': besseli(a, x) = Σ (x/2)^a / (Γ(n+1) * Γ(a+n+1))
.
Function for 'Bessel J': besseli(a, x) = idk
.
Function for 'Bessel Y': bessely(a, x) = csc(pi * a) * (a * pi * J(a, x) - J(0, x))
.
Function for 'Hankel Function 1': hankel1(a, x) = Bessel Y(a, x) + i * Bessel J(a, x)
.
Function for 'Hankel Function 2': hankel2(a, x) = Bessel J(a, x) - i * Bessel Y(a, x)
.
Function for 'Spherical Bessel I': sphbesseli(a, x) = sqrt(π/(x+x)) * besseli(a + 0.5, x)
.
Function for 'Spherical Bessel J': sphbesselj(a, x) = sqrt(π/(x+x)) * besselj(a + 0.5, x)
.
Function for 'Spherical Bessel K': sphbesselk(a,x) = sqrt(π / (x + x)) * besselk(a + 0.5, x)
.
Function for 'Spherical Bessel Y': sphbessely(a,x) = sqrt(π / (x + x)) * bessely(a + 0.5, x)
.
Function for 'Spherical Hankel 1': sphhankel1(a,x) = sqrt(π / (x + x)) * hankel1(a + 0.5, x)
.
Function for 'Spherical Hankel 2': sphhankel2(a,x) = sqrt(π / (x + x)) * hankel2(a + 0.5, x)
.
Function for 'Ricatti Bessel S': ricattibessels(n, x) = x * sphbesselj(n, x)
.
Function for 'Ricatti Bessel C': ricattibesselc(n, x) = -1 * x * sphbessely(n, x)
.
Function for 'Ricatti Bessel Xi': ricattibesselxi(n,x) = x * sphhankel1(n,x)
.
Function for 'Ricatti Bessel Zeta': ricattibesselzeta(n,x) = x * sphhankel2(n,x)
.
Function for 'Neuman': neuman(a,x) = (besselj(a, x) * cos(pi * a) - besselj(-a, x)) / sin(pi * a)
.
Function for 'Struve H': struve(a,x) = (x / 2)^(a + 1) * Σ ((-1)^n * (x / 2)^(2n) / (Γ(n + 3/2) * Γ(a + n + 3/2)))
.
Function for 'Struve L': struvel(a,x) = (x / 2)^(a + 1) * Σ ((x / 2)^(2n) / (Γ(n + 3/2) * Γ(a + n + 3/2)))
.
Function for 'Struve K': struvek(a,x) = struve(a,x) - struvel(a,x)
.
Function for 'Struve M': struvem(a,x) = struvevel(a,x) - besseli(a,x)
.
Function for 'Scorer Gi Derivative': scorergid(t, x) = ...
.
Function for 'Scorer Hi Derivative': scorerhid(t, x) = ...
.
Function for 'Scorer G': scorergi(x) = ...
.
Function for 'Scorer Hi': scorerhi(x) = ...
.
Function for 'Ai': ai(x) = ...
.
Function for 'Bi': bi(x) = ...
.
Function for 'Ai'': ai(x) = ...
.
Function for 'Bi'': bi(x) = ...
.
Function for 'Airy C': airyc(x) = bi(x) / ai(x)
.
Function for 'Airy Zeta': airyzeta(x) = ...
.
Function for 'Airy Bi Zeta': airybizeta(x) = ...
.
Function for 'Sinc Zeta': sinczeta(x) = ...
.
Function for 'Logarithm of Cosine': lncos(x,n) = (log(cos(x)))^n
.
Function for 'Logarithm of Sine': lnsin(x,n) = (log(sin(x)))^n
.
Function for 'Logarithm of Tangent': lntan(x,n) = (log(tan(x)))^n
.
Function for 'Logarithm of Secant': lnsec(x,n) = (log(sec(x)))^n
.
Function for 'Logarithm of Cotangent': lncot(x,n) = (log(cot(x)))^n
.
Function for 'Logarithm of cscant': lncsc(x,n) = (log(csc(x)))^n
.
Function for 'Log Integral Sine': logsin(x) = ∫ ln(sin(t)) dt from 0 to π/2
.
Function for 'Log Integral Cosine': logcos(x) = ∫ ln(cos(t)) dt from 0 to π/2
.
Function for 'Log Integral Tangent': logtan(x) = ∫ ln(tan(t)) dt from 0 to π/2
.
Function for 'Log Integral Secant': logsec(x) = ∫ ln(sec(t)) dt from 0 to π/2
.
Function for 'Log Integral cscant': logcsc(x) = ∫ ln(csc(t)) dt from 0 to π/2
.
Function for 'Log Integral Cotangent': logcot(x) = ∫ ln(cot(t)) dt from 0 to π/2
.
Function for 'Trigonometric Integral Auxiliary': triintgauxg(x) = -∫ cos(t) dt from x to bign + (π/2 - ∫ sin(t) dt from 0 to x) * sin(x)
.
Function for 'Entire Exponential Integral': ein(x) = ∫ e^(i*t) dt from 0 to x
.
Function for 'Si Integral': ssi(x) = -∫ sinh(t) dt from 0 to x
.
Function for 'Shi Integral': shi(x) = -∫ sin(t) dt from 0 to x
.
Function for 'Reciprocal': rec(x) = 1/x
.
Function for 'Chi Integral': chi(x) = 0.5772156649 + log(x) * ∫ cosh(t) dt from 0 to x - ∫ (1/t) dt from 0 to x
.
Function for 'Exponential Integral Auxilary': expcp(t,nx) = exp(-nx[1]/t) * t^(n[0]-2)
.
Function for 'Exponential Integral': en(n,x) = ∫ exp(t) dt from 1 to bign
.
Function for 'Ei Integral': ei(x) = ∫ exp(t) dt from -bign to x
.
Function for 'Fresnel C': fresnelc(x) = ∫ cos(t^2) dt from 0 to x
.
Function for 'Fresnel S': fresnels(x) = ∫ sin(t^2) dt from 0 to x
.
Function for 'Fresnel T': fresnelt(x) = ...
.
Function for 'Fresnel CT': fresnelct(x) = ...
.
Function for 'Fresnel SC': fresnelsc(x) = ...
.
Function for 'Fresnel CS': fresnelcs(x) = ...
.
Function for 'Gudermannian': gudermannian(x) = integral(sech, 0, x)
.
Function for 'Inverse Gudermannian': invguderman(x) = integral(sec, 0, x)
.
Function for 'Cosine Integral': ci(x) = -integral(cosc, x, bign)
.
Function for 'Si': si(x) = -integral(sinc, 0, x)
.
Function for 'Triangular Integral Auxiliary': triintgauxf(x) = ...
.
Function for 'Nielsen Integral': nielsenci(a, x) = ...
.
Function for 'Nielsen Sine Integral': nielsensi(a, x) = ...
.
Function for 'F': ellint1(p, a) = integral(compellint1d, 0, p, a)
.
Function for 'K': compellint1(a) = integral(compellint1d, 0, 1, a)
.
Function for 'E': ellint2(p, a) = integral(compellint2d, 0, p, a)
.
Function for 'E': compellint2(a) = integral(compellint2d, 0, 1, a)
.
Function for 'Π': ellint3(n, p, a) = integral(compellint3d, 0, p, [n, a])
.
Function for 'Π': compellint3(n, a) = integral(compellint3d, 0, 1, [n, a])
.
Function for 'Sigmoid': sigmoid(a) = 1 / (1 + e^-x)
.
Function for 'Generalized Logistic': generalizedlogistic(b,a) = (1+e^-b)^-a
.
Function for 'Logistic Phi': logisticphi(b,a) = (1-b*a)^(1/b)
.
Function for 'Logistic Regression': logisticregression(b,m,s) = 1 / (1 + e^-(x-m)/s)
.
Function for 'Softplus': softplus(b) = log(1 + e^b)
.
Function for 'Sobolev Tanh': sobolevatanh(b) = tanh(b) + b / cosh(b)^2
.
Function for 'Swish': swish(b) = b / (1 + e^-b)
.
Function for 'Fermi-Dirac': fermidirac(b) = 1 / (1 + e^b)
.
Function for 'Bose-Einstein': boseeinstein(b, a) = b^a / (e^(b - globalc) - 1)
.
Function for 'Einstein 1': einstein1(b) = b^2 e^b / (e^b - 1)^2
.
Function for 'Einstein 2': einstein2(b) = b / (e^b - 1)
.
Function for 'Einstein 3': einstein3(b) = log(1 - e^-b)
.
Function for 'Einstein 4': einstein4(b) = (b / (e^b - 1)) - log(1 - e^-b)
.
Function for 'Probit': h.
Function for 'Logit Logistic': logitlogistic(a, b) = a / (1 + e^-b)
.
Function for 'Complementary Log-Log': cloglog(b) = -log(-log(1 - e^-b))
.
Function for 'Gompertz': gompertz(a, b) = e^(-e^(-a * (b - 1)))
.
Function for 'Log-Logistic': loglogistic(a, b) = 1 / (1 + (b / a)^-1)
.
Function for 'Logistic Exponential': logisticexponential(a, b) = (a * e^b) / (1 + e^b)
.
Function for 'Log Odds': logodds(b) = log(b / (1 - b))
.
Inverse of lambertw: zex(x) = x*e^x
.
Inverse of based lambertw: zex(b,x) = x*b^x
.
Inverse of zex (x*e^x): lambertw(x) = integral{a 0->pi}(log(1+b*sinc(a)*exp(a/tan(a)))) da
.
Inverse of based zex (x*b^x): lambertw(x) = lambertw(a*log(b))/log(b)
.
lambertt(x) = -lambertw(-x)
.
lambertu(x) = lambertt(x)-lambertt(x)^2/2
.
lambertv(x) = log(1-lambertt(x))/2
.
Period of base x tetrationperitet(x) = (pi*-2i)/(log(-lambertw(-log(b))))
.
Fixed Logarithm log_x(y)=yfilog(x) = -lambertw(-log(b))/log(b)
.
wexzal(x) = ...
.
Inverse of x^xssrt(x) = log(x)/lambertw(log(x))
.
Inverse of x^x^xscbrt(x) = e^w(w( e^w(w(...e^w(w(b*log(b)))...*log(b))) *log(b)))
.
dilbertlambda(b) = sqrt(2 * b^2) / sqrt(2)
.
olga(b) = b / (b^2 + 1)
.
glog(b) = lambertw(-1 / b)
.
arcshoka(b) = log(exp(b) - 1) / log(e - 1)
.
arctania(b) = b + log(b) - 1
.
anka(b) = b * exp(b - 1)
.
logit(b) = -log(1 / b - 1)
.
wrightw(b) = lambertw(exp(b))
.
tania(b) = lambertw(exp(b + 1))
.
arctrappmann(b) = b - lambertw(exp(b))
.
doya(b) = lambertw(b * exp(b + 1))
.
belllambda(b) = b/lambertw(b)
.
Function for 'xpsin': xpsin(x) = x + sin(x)
.
Function for 'xmsin': xmsin(x) = x - sin(x)
.
Function for 'arcxmsin': arcxmsin(x) = newtoninv("xmsin(x)", ...)
.
Function for 'arcxpsin': arcxpsin(x) = newtoninv("xpsin(x)", ...)
.
Function for 'arcxmdsin': arcxmdsin(x, d) = newtoninv("x - d*sin(x)", ...)
.
Function for 'tcospcost': tcospcost(x, t) = t*cos(x) + cos(t*x)
.
Function for 'arctcospcost': arctcospcost(x, d) = newtoninv("tcospcost(x, d)", ...)
.
Function for 'tcosmcost': tcosmcost(x, t) = t*cos(x) - cos(t*x)
.
Function for 'arctcosmcost': arctcosmcost(x, d) = newtoninv("tcosmcost(x, d)", ...)
.
Function for 'tcospdcost': tcospdcost(x, d, t) = t*cos(x) + d*cos(t*x)
.
Function for 'arctcospdcost': arctcospdcost(x, d, t) = newtoninv("tcospdcost(x, d, t)", ...)
.
Function for 'wittgensteinsc': wittgensteinsc(x, h, v, l) = ...
.
Function for 'arcwittgensteinsc': arcwittgensteinsc(x, h, v, l) = newtoninv("wittgensteinsc(x, h, v, l)", ...)
.
Function for 'dtanpi4pcos': dtanpi4pcos(x, d) = d*tan(x + π/4) + cos(x)
.
Function for 'arcdtanpi4pcos': arcdtanpi4pcos(x, d) = newtoninv("dtanpi4pcos(x, d)", ...)
.
Function for 'sin2tan': sin2tan(x) = sin^3(x) / cos(x)
.
Function for 'arcsin2tan': arcsin2tan(x) = newtoninv("sin^3(x)/cos(x)", ...)
.
Function for 'Circle': circle(x, p, parity) = sqrt(1-x*x)
.
Function for 'Ellipse': ellipse(x, px, py, parity) = ...
.
Function for 'Tractrix': circle(x, p, parity) = inverse of a*cosh(a/x)-sqrt(a*a-x*x)
.
Function for 'Superellipse': superellipse(x, p, parity, n) = ...
.
Function for 'Cycloid': cycloid(x, p) = ...
.
Function for 'Tautochrone': tautochrone(x, p) = ...
.
Function for 'Trochoid': trochoid(x, d, p) = ...
.
Function for 'Hypocycloid': hypocycloid(x, k) = ...
.
Function for 'Hypotrochoid': hypotrochoid(x, d, k) = ...
.
Function for 'Epitrochoid': epitrochoid(x, d, k) = ...
.
Function for 'Epicycloid': epicycloid(x, k) = ...
.
Function for 'Lissajous': lissajous(x, wx, wy, dx, dy, ax, bx) = ...
.
Function for 'Lissajous Simple': lissajoussimple(x, wx, dx, ax, bx) = ...
.
Function for 'Wittgenstein's': wittgensteins(x, h, v, l) = ...
.
Function for 'Cardioid': cardioid(x, parity, parity2) = ...
.
Function for 'Deltoid': deltoid(x, parity) = ...
.
Function for 'Astroid': astroid(x, parity) = ...
.
Function for 'Generalized Cardioid': generalizedcardioid(x, parity, limach, parity2) = ...
.
Function for 'Nephroid': nephroid(x, parity) = ...
.
Function for 'Nephroid Y': nephroidy(x, parity) = ...
.
Function for 'Generalized Tribonacci': r1*A^x+r2*B^x+r3*C^x ; f(x)=f(x-1)*r+f(x-2)*s+f(x-3)*t ; f0 == a,b,c
Function for 'Mandelbrot': z_n+1 = z_n^2+c
.
Function for 'perpendicularmandelbrot': z_n+1 = (conj(rabs(z_n)))^2+c
.
Function for 'tricorn': z_n+1 = conj(z_n^2)+c
.
Function for 'celtic': z_n+1 = rabs(z_n^2)+c
.
Function for 'perpendicularceltic': z_n+1 = conj(rabs(z_n^2))+c
.
Function for 'burningship': z_n+1 = iabs(z_n^2)+c
.
Function for 'perpendicularburningship': z_n+1 = iabs(z_n)^2+c
.
Function for 'buffalo': z_n+1 = cabs(z_n^2)+c
.
Function for 'perpendicularbuffalo': z_n+1 = iabs(rabs(z_n)^2)+c
.
Function for 'simonbrot': z_n+1 = (z*|z|)^2+c
.
Function for 'perpendicularsimonbrot': z_n+1 = (z_n^2*|z_n^2|)+c
.
Function for 'lambdafractal': z_n+1 = c*z*(1-z)
.
Function for 'duckfractal': z_n+1 = log(iabs(z)+c)
.